
Introduction
Preparations for the Second Week

Vertiefungspraktikum Bioinformatik, Python-Kurs, BSc 5. FS,
BMCV Group, Prof. Dr. K. Rohr

Wintersemester 2023/2024

Course web-page: https://github.com/BMCV/mobi-fs5-python

If working in the BioQuant computer room, please use Chrome instead of Firefox
as the web browser, because the installed version of Firefox is known to have issues
with GitHub. Using Firefox is fine when working on your personal computer.

1 Setting up your GitHub repository

1. Open the course web-page in any web-browser of your choice.

2. Click on “Use this template” and then “Create a new repository“.

3. This will load another web-page entitled “Create a new repository”. Enter “mobi-
fs5-python” as the repository name, leave everything else on default, and confirm
the creation of the repository by clicking the “Create repository” button.

4. You should see a “Generating your repository” message for a few seconds and
then be presented with an overview of your repository.

2 Firing up a GitHub Codespace

1. Open the overview of your repository on GitHub. This is the web-page that you
landed on after completing Task 1.

2. Click on the green “Code‘” button, then select the “Codespaces” tab.

3. Click the green “Create codespace on master” button. This will load VS Code
(Visual Studio Code) inside of your web-browser. Wait until everything is loaded,
it may take about one minute.

Creating a codespace. Deleting a codespace.

Note: If, at any time, VS Code behaves weirdly (e.g., complaining about missing
extensions, not loading notebooks, not finding kernels, or similar), try to reload the VS
Code window. To do that, press Ctrl + P (or + P if you are on macOS) and
type “> Reload window ←↪ ” (don’t miss the “>” at the front). Your work progress
will be preserved. If this does not solve the issue, make sure your work is committed
and pushed (see Task 4), then go to https://github.com/codespaces and delete the
codespace. Then, re-create the codespace by following the steps 1–3 described above.

Last changed: February 7, 2025 1

https://github.com/BMCV/mobi-fs5-python
https://github.com/codespaces

Introduction
3 Working with VS Code and Jupyter notebooks

The left panel of VS Code shows an overview of your local repository. Right now it
is identical to your GitHub repository. The assignments of this course are organized
into several Jupyter notebooks. These are the *.ipynb files that you can see in your
repository. By progressing from task to task, you will work with different notebooks
(open a notebook by double clicking it).

In Jupyter notebooks, code cells can be run in an arbitrary order. This is very helpful
for experimenting and trying out new things. Still, an assignment in this course is only
considered “finished” when the results can be reproduced by re-running all code cells
from top to bottom by clicking the “Run all” button.

4 Preserving your work progress with Git

When finished, close your notebook. Changes are saved automatically within your
local repository, but remember, that those changes will be lost when you close the
codespace, unless you push them to your GitHub repository.

To do that, click on the “Terminal” tab at the bottom of VS Code, type the following
Git command, and press ←↪ to execute it:

git commit --all -m "Finish task 1.3"

The text “Finish task 1.3” is the commit message, which is arbitrary. Describe what
changes you have done since your previous commit.

If you wanted, you could revert to any previous commit at a later time, and choosing
an expressive message is convenient for finding the commit which you will be looking
for. There also are some conventions for how a commit message should be formatted:
It should tell in an “imperative mood” and as concisely as possible, what the committed
changes are supposed to do1.

If done correctly, the output of the above command should be something like “1 file
changed, 12 insertions(+), 1 deletion(-)”, but the exact numbers may vary.

Finally, type “git push” and press ←↪ to push the committed changes to your
GitHub repository. If done correctly, there should be multiple lines of output, conclud-
ing with a line similar to “1d2e403..a387645 master −> master”.

5 Create a cheat sheet for the second week

Now you already know how to edit, commit, and push a Jupyter notebook.

1. In preparation of the second week, create a cheat sheet of the most important
takeaways from what you have learned in Datacamp. To do so, open the notebook
cheatsheet.ipynb and complete it.

2. Commit and push your changes, then close VS Code (the browser tab/window).

1From the official Git documentation: https://git.kernel.org/pub/scm/git/git.git/tree
/Documentation/SubmittingPatches?h=v2.36.1#n181

Last changed: February 7, 2025 2

Lab Session 1
Threshold-based segmentation, Sobel filter

Vertiefungspraktikum Bioinformatik, Python-Kurs, BSc 5. FS,
BMCV Group, Prof. Dr. K. Rohr

Wintersemester 2023/2024

1 Intensity thresholding and Dice coefficient

Above, we described how to use Codespaces, work with Jupyter notebooks, and commit
and push your changes to your GitHub repository. Now proceed with the tasks below.

1. Open VS Code in a GitHub Codespace (see Task 2 of the Introduction) using the
repository which you created before (see Task 1 of the Introduction).

2. Open the Jupyter notebook segm_threshold.ipynb and extend it as follows:

(a) Use plt.imread(’data/NIH3T3/im/dna-0.png’) to load an image.
(b) Use plt.figure() (or, e.g., plt.figure(figsize=(15,8)) if you want to

specify the size of the figure) to add a figure to a code cell of the notebook.
Then, within the same code cell, use plt.imshow to display the image within the
figure. In addition, use plt.colorbar() after the plt.imshow-instruction to
include a legend of the color encoding.

(c) Recall that given a threshold 𝑇, each pixel 𝑥, 𝑦 of the image with an intensity
value 𝑔

(
𝑥, 𝑦

)
greater or equal the threshold 𝑇 is assigned the value 1 and

each pixel with a value less than 𝑇 is assigned the value 0:

𝑔threshold
(
𝑥, 𝑦

)
=

{
1 if 𝑔

(
𝑥, 𝑦

)
≥ 𝑇,

0 otherwise

Using the color legend from task (b), what might be a good choice for the
threshold 𝑇 to reproduce the binary image in Figure 1 below?

Figure 1: Segmentation ground truth for the image data/NIH3T3/im/dna-0.png.

Last changed: February 7, 2025 3

Lab Session 1
(d) Binarize the loaded image by applying intensity thresholding. Adjust the

threshold such that your result looks similar to Figure 1 – Hints:
i. When working with objects of the type np.ndarray (e.g., images), math-

ematical operations are propagated to the intensity values of the image.
For example, if 𝑔 is the image img and 𝑇 is the intensity threshold thres,
then the formal expression 𝑔threshold corresponds to “img >= thres” in
Python.

ii. Exploiting propagation of mathematical expressions is faster than writing
loops. More importantly, it is also less cumbersome and less prone to
programming mistakes. Always avoid writing loops when propagation of
mathematical expressions can be used instead!

(e) Evaluate your segmentation result by quantitatively comparing it to the
ground truth in Figure 1. Use the Dice coefficient for the quantitative
comparison:

Dice (𝐺, 𝐻) = 2 |𝐺 ∩ 𝐻|
|𝐺| + |𝐻|

where 𝐺 and 𝐻 are the two sets of image points corresponding to the fore-
ground of the segmentation result (i.e. the binary image produced by in-
tensity thresholding) and the foreground of the segmentation ground truth,
respectively. Compute the Dice coefficient for your segmentation result –
Hints:

i. In Python, sets of image points are conveniently represented as binary
images (a pixel value is set to True if the set contains that pixel and to
False otherwise). An image img is binary if img.dtype is bool.

ii. If G is the binary image representing the set 𝐺, then G.sum() yields the
cardinality |𝐺| of that set.

iii. If G and H are the two binary images representing the sets 𝐺 and 𝐻, then
“G * H” yields the binary image representing 𝐺 ∩ 𝐻.

iv. Use “plt.imread(’data/NIH3T3/gt/0.png’)” to load the ground truth.

3. Commit and push your changes. Remember to do this regularly!

Last changed: February 7, 2025 4

Lab Session 1
𝑥

𝑦

+1 0 -1
1
8 +2 0 -2

+1 0 -1

+1 +2 +1
1
8 0 0 0

-1 -2 -1

Figure 2: Sobel derivative operators

2 Sobel filter (bonus)

Open the notebook sobel.ipynb. Extend it as follows:

1. Use plt.imread and plt.imshow to load and show the image data/lena.png.

2. Compute the partial derivatives 𝑔𝑥 and 𝑔𝑦 by convolving the image 𝑔
(
𝑥, 𝑦

)
with

Sobel derivative operators (see Figure 2). To this end, implement the re-usable
functions sobel_h and sobel_v. The functions are supposed to compute and
return the convolution of the input image img with the horizontal and vertical
Sobel derivative operators, respectively.

3. Test your implementations for sobel_h and sobel_v by including images of the
computed partial derivatives into your notebook (also include color legends).

4. Compute the magnitude of the image gradient

∇𝑔 (
𝑥, 𝑦

)

 = √
𝑔2𝑥

(
𝑥, 𝑦

)
+ 𝑔2𝑦

(
𝑥, 𝑦

)
and include the resulting image into the notebook. Exploit propagation of mathe-
matical expressions instead of writing loops!

Last changed: February 7, 2025 5

Lab Session 2
Segmentation via Otsu thresholding

Vertiefungspraktikum Bioinformatik, Python-Kurs, BSc 5. FS,
BMCV Group, Prof. Dr. K. Rohr

Wintersemester 2023/2024

1 Otsu thresholding

Open the notebook otsu.ipynb and extend it as follows:

1. Load the image from: imgf = plt.imread(’data/NIH3T3/im/dna-0.png’).
The intensities of this image range from 0 to 1.

2. Quantize the image into 256 bins:

img8 = (imgf * 255).round().astype(np.uint8)

3. Compute the histogram h of img8 such that, for example, h[0] corresponds to the
number of image pixels with intensity 0 and h[255] corresponds to the number
of image pixels with intensity 255 – Hint: “img8 == i” yields a binary image,
which corresponds to the set of all points with intensity i.
Note: Do not use pre-defined functions like np.histogram or plt.hist, but
implement the computation of the histogram yourself. To do this, the occurrences
of the different intensity values in the image img8must be counted. For counting,
h should be initialized as a flat array with 256 entries (e.g., “np.zeros(256)”).
After counting, h corresponds to the histogram of img8, and the code below can
be used to show the histogram:

plt.figure(figsize=(14,5))
plt.bar(range(256), h, width=1)

4. Compute the optimal intensity threshold𝑇 by implementing the method of Otsu,

min
𝑇=1...255

𝑛1 (𝑇) · 𝜎21 (𝑇) + 𝑛2 (𝑇) · 𝜎22 (𝑇) , (1)

where 𝑛𝑖 is the number of pixels and 𝜎2
𝑖

is the intensity variance within the 𝑖-
th class. Assume that the two classes are given by the intensities [0, 𝑇 − 1] and
[𝑇, 255]. Also consider the following hints:

(a) The empirical variance of values is obtained by var(values).
(b) The intensity variance 𝜎2

𝑖
can be computed either using (i) the image inten-

sities img8 directly or (ii) the histogram h and the formulas from the lecture.

5. Compute the segmentation of the loaded image using Otsu thresholding (i.e. use
the optimal intensity threshold 𝑇 to perform intensity thresholding).

6. Evaluate the segmentation result using the Dice coefficient.

Last changed: February 7, 2025 6

Lab Session 2
2 Batch processing

Open the notebook otsu_batch.ipynb and extend it as follows:

1. In the previous task, you have implemented the method of Otsu and performed
Otsu thresholding for a single image. Now, make this code re-usable by putting it
into a function which you can use anytime later. For your convenience, a skeleton
of the code you need to write to implement the function is already added to the
notebook.

2. Implement a re-usable function to compute the Dice coefficient using the skeleton
in the notebook.

3. Test your implementations by using the two functions to perform Otsu threshold-
ing of the image ’data/NIH3T3/im/dna-0.png’ and compute the corresponding
Dice coefficient. The Dice coefficient should be the same as in Task 1! If it is not, look
for a mistake you have made and fix it.
Note: The function “compute_dice” takes two parameters, which must corre-
spond to binary images. If you encounter an AssertionError in this function, one
of the images used as the parameters of the function is not binary. You can use
the method “.astype(bool)” to obtain a binary representation of an image.

4. Write a for-loop which iterates the sequence i = 28, 29, 33, 44, 46, 49 and

(a) loads the i-th image via plt.imread(f’data/NIH3T3/im/dna-{i}.png’),
(b) loads the corresponding ground truth from f’data/NIH3T3/gt/{i}.png’,
(c) performs Otsu thresholding,
(d) computes the Dice coefficient of the segmentation result.

The Dice coefficient should be printed for each image. In addition, compute and
print the mean Dice coefficient for all images.

Last changed: February 7, 2025 7

Lab Session 3
Fourier transform

Vertiefungspraktikum Bioinformatik, Python-Kurs, BSc 5. FS,
BMCV Group, Prof. Dr. K. Rohr

Wintersemester 2023/2024

Open the notebook fourier.ipynb and extend it as follows:

1. Explore the Fourier transform by following these steps:

(a) Load the first image2 as given in the notebook, resize it to (256, 256) pixels
using the resize() function (already imported), and show the result.

(b) Apply the fast Fourier transform (FFT) to the image:

cell_ft = np.fft.fft2(cell_img)

Be careful to use the fft2 function (not just fft without the “2”) since we
use a two-dimensional image. The result should be a complex array, so verify
this by checking cell_ft.dtype of the result of the FFT. – Hint: The FFT is
an algorithm that efficiently calculates the discrete Fourier transform (DFT).

(c) The result of the FFT is in the Cartesian form (𝑥 = 𝑎 + 𝑏𝑖, where “𝑖” is
the imaginary number). You can access the real part 𝑎 by .real and the
imaginary part 𝑏 by .imag. Note that in Python the imaginary number 𝑖 is
j. To interpret the image in the Fourier domain, take a look at the amplitude
𝑟 and phase 𝜙 considering the polar form (𝑥 = 𝑟𝑒 𝑖𝜙). Extract the amplitude 𝑟

the phase 𝜙 using following code:

amplitude = np.abs(cell_ft)
phase = np.angle(cell_ft)

Display them side by side using the following code:

plt.figure()
plt.subplot(1, 2, 1)
plt.imshow(np.log(amplitude), ’gray’)
plt.subplot(1, 2, 2)
plt.imshow(phase, ’gray’)

Hints: The function plt.subplot adds a new subplot with the three pa-
rameters (i) total number of rows, (ii) total number of columns, and (iii) at
which position to place the image. Furthermore, show the logarithm of the
amplitude for better visibility of the huge range of values.

(d) Now, shift the zero components to the center of the spectral image using
np.fft.fftshift(cell_ft). Extract and show amplitude and phase again.

(e) Restore the image using the inverse fast Fourier transform (IFFT) by using
the function np.fft.ifft2 and show the restored image. The IFFT will also
return a complex array. However, since the original image contains only
real numbers, the restored image can be accessed using the real values of
the array. Please note, if you did a shift in the Fourier domain, you have to
reverse this first with np.fft.ifftshift before applying the IFFT.

2Source: https://www.cellpose.org/dataset

Last changed: February 7, 2025 8

https://www.cellpose.org/dataset

Lab Session 3
2. Study the role of the amplitude and the phase:

(a) Load the image data/brain_mri.png3.
(b) Apply the FFT, do a shift, then extract and display phase and amplitude.
(c) Compose a merged image by “restoring“ it from the amplitude of the brain

image and the phase of the cell image. To this end, first convert the amplitude
and phase to a Cartesian complex array using the pre-implemented function
to_complex_array. Be careful to consistently either use only the shifted or
the non-shifted amplitude and phase, when merging. Reverse the shift if
you used the shifted values and do the IFFT. Show the result.

(d) Repeat the previous step vice versa (use the amplitude of the cell image and
the phase of the brain image).

(e) Conclude, what carries more information, the phase or the amplitude?

3. Apply a low-pass and a high-pass filter using the convolution theorem:

(a) Create a mask to use as low-pass filter on the shifted amplitudes. To this
end, first create an array of the same shape as the image, filled with zeros.
Insert a rectangle of filter window size with the value one to the mask at the
center of the image. Display your mask to check if only the center contains
ones. Your mask should look like the following image:

(b) Also create a high-pass filter mask – Hint: You can use “one minus the
low-pass mask” to achieve this.

(c) Now apply your masks by multiplying them with the shifted amplitude
of the brain image. Display the shifted amplitude without any filter, the
low pass-filtered, and the high pass-filtered image side by side. Scale the
amplitudes logarithmically.

(d) Merge the filtered amplitudes with the phase of the brain image to a complex
array. Reverse the shift and apply the IFFT. Show the original image, the low
pass-filtered, and the high pass-filtered merged images side by side.

(e) Repeat the above steps using different filter sizes and observe the differences.

3Source: https://brain-development.org/ixi-dataset

Last changed: February 7, 2025 9

https://brain-development.org/ixi-dataset

Lab Session 3
4. Implement your own DFT function and compare the result as well as the run time

to the implementation from numpy:

(a) Implement a re-usable function that computes the DFT, i.e.

dft[𝑢, 𝑣] = 1

𝑀𝑁

𝑀−1∑
𝑥=0

𝑁−1∑
𝑦=0

img[𝑥, 𝑦]𝑒−2𝑗𝜋(𝑢𝑥𝑀 +
𝑣𝑦

𝑁) (2)

Hints: First, create an array filled with complex values using

dft = np.zeros(img.shape, dtype=complex)

Then, extract the dimensions of the image by M,N = img.shape. The for-
mula (2) calculates one entry of the dft-array, so you have to use for-loops
to fill the whole array (which you initialized with zeros).

(b) Implement a re-usable function that computes the IDFT, i.e.

idft[𝑢, 𝑣] =
𝑀−1∑
𝑥=0

𝑁−1∑
𝑦=0

dft[𝑥, 𝑦]𝑒2𝑗𝜋(𝑢𝑥𝑀 +
𝑣𝑦

𝑁) (3)

(c) Try your implementation using the brain image and display amplitude and
phase. – Hint: You can still use the fftshift function after using your DFT.

(d) Reconstruct the image using your IDFT implementation and display the
result.

(e) The FFT is an efficient algorithm to compute the DFT. Compare your results
to those obtained using the FFT from numpy, which you used for the previous
tasks. Apply the FFT as well as your DFT implementation to the brain image.
Then, compare the results using np.allclose. – Note: You must use the
parameter norm=’forward’ for the np.fft.fft2 function to obtain identical
results. The reason is that there are slightly different definitions4 of the DFT
and using norm=’forward’ enforces the definition from Eq. (2).

(f) Compute the mean difference between the results of the two algorithms by
np.mean(np.abs(own_dft - np_fft)). Afterwards, round the DFT and the
FFT arrays using np.round(array, 5), where 5 is the number of decimals
to maintain. Compare the arrays using (own_dft == np_fft).all(). This
statement returns True if all values of the arrays match. Select the number
of decimals in such a way that you round as few as possible while the arrays
are still matching.

(g) Compare the run times of your DFT implementation to the FFT implemen-
tation from numpy using the %timeit command.

4https://numpy.org/doc/stable/reference/routines.fft.html#implementation-details

Last changed: February 7, 2025 10

https://numpy.org/doc/stable/reference/routines.fft.html#implementation-details

Lab Session 4
Deconvolution

Vertiefungspraktikum Bioinformatik, Python-Kurs, BSc 5. FS,
BMCV Group, Prof. Dr. K. Rohr

Wintersemester 2023/2024

Open the notebook deconvolution.ipynb and extend it as follows:

1. Load the image in the notebook and apply the given uniform point spread function
(PSF) by using the functionscipy.signal.convolve2d(img, psf, mode=’same’,
boundary=’symm’) which is already imported as ”conv”. Display the resulting
image.

2. The notebook also contains a Gaussian PSF. Apply the Gaussian PSF to the original
image and observe the differences in comparison to using the uniform PSF.

3. Implement the Richardson-Lucy (R-L) deconvolution as a re-usable function (for
your convenience, the notebook already contains a skeleton which you can use).
The R-L deconvolution is an iterative process with the step

ℎ(𝑡+1) = ℎ(𝑡) ·
(𝑔

ℎ(𝑡) ∗ 𝑃
∗ 𝑃∗

)
, (4)

where 𝑔 is the input image to the algorithm, ℎ is the deconvolved image, which is
initialized as an array of the same shape as the image, filled with constant value
0.5. 𝑃 is the PSF and 𝑃∗ is the flipped PSF. You can flip it using the np.flip
function. The operator “∗” corresponds to the convolution operation for which
you can use the ”conv” function from Task 1. again.
Hint: The indices 𝑡 and 𝑡 + 1 written in parentheses and superscript in Eq. (4)
are not exponents, but numbers of iterations, i.e. ℎ(𝑡) denotes ℎ at iteration 𝑡 and
ℎ(𝑡+1) denotes ℎ at iteration 𝑡 + 1.

4. Use your R-L implementation to restore the original image, which was blurred
by the first PSF. Display the original, the blurred, and the restored image side by
side. Try different values for the number of iterations for the R-L algorithm.

5. Add white noise to the blurred image generated in Task 2 as an additive com-
ponent (the white noise is already generated in the notebook). To ensure that
the image intensities remain in the interval [0, 1] remember to perform intensity
clipping after adding the noise. Repeat the R-L deconvolution for the noisy im-
age and display the result as before. Try a different noise level by changing the
variable reduce_factor (larger values correspond to lower noise levels).

6. Compare the result of your R-L implementation to that of the Wiener deconvo-
lution, which you can use by wiener(img_psf, psf, balance=2, clip=True).
The corresponding function wiener is pre-implemented. Display the original
image beside the R-L reconstruction and the Wiener reconstruction. – Hint: You
can try different values for the parameter balance to achieve better results.

7. Repeat the previous tasks using a smaller value for the size of the PSF (e.g., 5).

8. Try using a “wrong” PSF for the R-L deconvolution and observe the impact.
Display both, the R-L reconstruction using the uniform PSF for the image blurred
with the Gaussian PSF, and the other way round.

Last changed: February 7, 2025 11

Bonus Tasks
Segmentation by texture classification

Vertiefungspraktikum Bioinformatik, Python-Kurs, BSc 5. FS,
BMCV Group, Prof. Dr. K. Rohr

Wintersemester 2023/2024

1 Patch-based segmentation

In this assignment, you will implement segmentation using a machine learning ap-
proach. To this end, an image is first subdivided into a equisized grid of patches. Then,
a classifier is used to decide for each image patch, whether that image patch corresponds
to an object or the image background. More formally, the decision function

𝑓 : ℝ𝑛2 → {−1,+1}

maps the image intensities from an 𝑛 × 𝑛 image region to a label, which represents
image background (−1) or image foreground (+1), respectively. We implement the
function 𝑓 using a support vector machine (SVM) based on Gaussian kernels.

One part of the assignment is the training of the SVM using pre-annotated ground
truth image data. The SVM is trained by supplying a data matrix 𝑋 ∈ ℝ𝑚×𝑛2 and a
corresponding ground truth vector of labels 𝑦 ∈ {−1,+1}𝑚 ,

𝑋 =


𝑥1
...

𝑥𝑚

 , 𝑦 =


𝑦1
...

𝑦𝑚

 ,
where each row of the data matrix corresponds to the image intensities from an im-
age patch (squeezed into a row vector). The image patch 𝑥𝑘 is associated with the
corresponding ground truth label 𝑦𝑘 by the index 𝑘 ∈ [𝑚].

In the other part of the assignment, the SVM is queried to compute the prediction
𝑓 (𝑥) for image patches 𝑥 ∈ ℝ𝑛2 . Instead of computing the prediction for only a single
image patch, it is convenient to predict the labels

𝐹 (𝑋) =

𝑓 (𝑥1)
...

𝑓 (𝑥𝑚)

 ,
for multiple image patches at once (where the image patches are arranged in a data
matrix 𝑋 ∈ ℝ𝑚×𝑛2). We use the SVM implementation from scikit-learn5 and patches of
the size 32 × 32 pixels (i.e. 𝑛 = 32).

Open the notebook svm_segm.ipynb and extend it as follows:

1. Implement the function create_data_matrix, which takes an image as the pa-
rameter, creates the corresponding data matrix 𝑋 for that image, and returns the
data matrix – Hint: Loops can be avoided by using the function view_as_blocks6

from the skimage.utilmodule.

2. Implement the function create_gt_labels_vector, which takes a binary image
as the parameter (the ground truth segmentation), creates the vector of labels 𝑦,
and returns that vector. The implementation is analogous tocreate_data_matrix:

5https://scikit-learn.org/stable/modules/generated/sklearn.svm.SVC.html
6https://scikit-image.org/docs/dev/api/skimage.util.html#skimage.util.view_as_blocks

Last changed: February 7, 2025 12

https://scikit-learn.org/stable/modules/generated/sklearn.svm.SVC.html
https://scikit-image.org/docs/dev/api/skimage.util.html#skimage.util.view_as_blocks

Bonus Tasks
If the area of the ground truth image corresponding to an image patch contains
more than 50% foreground, assign the label +1 to that image patch. If that area
contains no foreground, assign the label −1. Otherwise, assign the label 0 (see
below).

3. Create the SVM classifier “clf” using the following code:

clf = make_pipeline(StandardScaler(), \
SVC(class_weight=’balanced’, gamma=0.1))

Now it is time to train the classifier:

(a) Using the function create_data_matrix implemented before, generate the
data matrices for the two imagesdata/NIH3T3/im/dna-33.pnganddna-44.png.

(b) Use create_gt_labels_vector to generate the label vectors based on the
corresponding ground truth images data/NIH3T3/gt/33.png and 44.png.

(c) Stack the two data matrices and the two corresponding label vectors, but
only keeping those rows of the data matrices and the label vectors, where
the corresponding label is −1 or +1 (i.e. discard rows where the label is 0) –
Hint: You can use np.concatenate7 to perform the stacking.

(d) Use “clf.fit(X, Y)” to train the classifier, whereX is the stacked data matrix
and Y is the stacked label vector. The duration of the training depends on
your computer, but should be complete within a few seconds.

4. Implement the function predict_image, which takes an image as the parameter
and performs segmentation using the trained classifier clf. To this end, the
function

(a) uses create_data_matrix to obtain the data matrix X for the given image,
(b) uses clf.predict(X) to obtain the predicted label vector 𝐹 (X),
(c) creates a binary image result, where patches corresponding to the predicted

label +1 are set to True and to False otherwise, and returns it.

Afterwards, test your implementation for the image dna-0.png. You can use the
pre-implemented function blend_result to visualize the segmentation results:

plt.figure()
img = plt.imread(f’data/NIH3T3/im/dna-0.png’)
seg = predict_image(img)
imshow(blend_result(img, seg))

7https://numpy.org/doc/stable/reference/generated/numpy.concatenate.html

Last changed: February 7, 2025 13

https://numpy.org/doc/stable/reference/generated/numpy.concatenate.html

Bonus Tasks
5. Write a for-loop which iterates the sequence i = 28, 29, 33, 44, 46, 49 and

(a) loads the i-th image via plt.imread(f’data/NIH3T3/im/dna-{i}.png’),
(b) loads the corresponding ground truth from f’data/NIH3T3/gt/{i}.png’,
(c) performs patch-based segmentation by using the function predict_image,
(d) computes the Dice coefficient of the segmentation result.

The Dice coefficient should be printed for each image. In addition, compute and
print the mean Dice coefficient for all images.

6. Compare the results to those from Otsu thresholding.

2 Improving the segmentation performance

Improve the segmentation performance. Here are some ideas:

1. The segmentation accuracy of the segmentation approach you have implemented
above is limited by the size of the patches. Although larger patches are capable of
capturing more information, they also lead to a loss of accuracy since the image
is subdivided more coarsely. This can be improved by using overlapping patches,
which are commonly known as a sliding window. You can use view_as_windows8

from the skimage.utilmodule instead of view_as_blocks.

2. Incorporate pre-processing of the image data (e.g., classify filter responses instead
of the raw image intensities, or use principal component analysis to reduce the
dimensionality of the data under classification).

3. Incorporate other image features (e.g., Histograms of Gaussians9).

4. Be creative and try out different possibilities.

8https://scikit-image.org/docs/dev/api/skimage.util.html#skimage.util.view_as_windows
9https://scikit-image.org/docs/dev/api/skimage.feature.html#skimage.feature.hog

Last changed: February 7, 2025 14

https://scikit-image.org/docs/dev/api/skimage.util.html#skimage.util.view_as_windows
https://scikit-image.org/docs/dev/api/skimage.feature.html#skimage.feature.hog

	Setting up your GitHub repository
	Firing up a GitHub Codespace
	Working with VS Code and Jupyter notebooks
	Preserving your work progress with Git
	Create a cheat sheet for the second week
	Intensity thresholding and Dice coefficient
	Sobel filter (bonus)
	Otsu thresholding
	Batch processing
	Patch-based segmentation
	Improving the segmentation performance

