
Lab Session 1
Python introduction and Jupyter notebooks

Übungen zur Vorlesung “Methoden der Bioinformatik”
Teil Bildanalyse (Computer Vision), BMCV Group, PD Dr. K. Rohr

Wintersemester 2024/2025

Course web-page: http://www.bioquant.uni-heidelberg.de/research/groups/
biomedical-computer-vision/teaching/compmeth/Labsessions

If working in the BioQuant computer room, please use Chrome instead of Firefox
as the web browser, because the installed version of Firefox is known to have issues
with GitHub. Using Firefox is fine when working on your personal computer.

1 Setting up your GitHub repository

1. Open the course web-page in any web-browser of your choice.

2. Click on the link in “Create a new GitHub repository by using this link”.

3. This will load another web-page entitled “Create a new repository”. Leave every-
thing on default and confirm the creation of the repository by clicking the “Create
repository” button.

4. You should see a “Generating your repository” message for a few seconds and
then be presented with an overview of your repository. You just created your
first GitHub repository – congrats! :)

2 Firing up a GitHub Codespace

1. Open the overview of your repository on GitHub. This is the web-page that you
landed on after completing Task 1.

2. Click on the green “Code‘” button, then select the “Codespaces” tab.

3. Click the green “Create codespace on master” button. This will load VS Code
(Visual Studio Code) inside of your web-browser. Wait until everything is loaded,
it may take about one minute.

Creating a codespace. Deleting a codespace.

Note: If, at any time, VS Code behaves weirdly (e.g., complaining about missing
extensions, not loading notebooks, not finding kernels, or similar), try to reload the VS
Code window. To do that, press Ctrl + + P (or + + P if you are on macOS)
and type “Reload window ←↪ ”. Your work progress will be preserved. If this does
not solve the issue, make sure your work is committed and pushed (see Task 3), then
go to https://github.com/codespaces and delete the codespace. Then, re-create the
codespace by following the steps 1–3 described above.

Last changed: October 6, 2024 1



Lab Session 1
3 Your first Jupyter notebook

The left panel of VS Code shows an overview of your local repository. Right now it is
identical to your GitHub repository. The assignments of this course are organized into
several Jupyter notebooks. These are the task*.ipynb files that you can see in your
repository. By progressing from task to task, you will work with different notebooks.

1. Double click the file task1.3.ipynb inside of VS Code to open the notebook for
this task, and follow the instructions inside the notebook. – Note: In Jupyter
notebooks, code cells can be run in an arbitrary order. This is very helpful for
experimenting and trying out new things. Nevertheless, an assignment in this
course is only considered “finished” when the results can be reproduced by re-
running all code cells from top to bottom by clicking the “Run all” button.

2. When finished, close your notebook. Changes are saved automatically within
your local repository, but remember, that those changes will be lost when you
close the codespace, unless you push them to your GitHub repository.

3. To do that, click on the “Terminal” tab at the bottom of VS Code, type the following
Git command, and press ←↪ to execute it:

git commit --all -m "Finish task 1.3"

The text “Finish task 1.3” is the commit message, which is arbitrary. Describe
what changes you have done since your previous commit.
If you wanted, you could revert to any previous commit at a later time, and
choosing an expressive message is convenient for finding the commit which you
will be looking for. There also are some conventions for how a commit message
should be formatted: It should tell in an “imperative mood” and as concisely as
possible, what the committed changes are supposed to do1.
If done correctly, the output of the above command should be something like “1
file changed, 12 insertions(+), 1 deletion(-)”, but the exact numbers may vary.
Finally, type “git push” and press ←↪ to push the committed changes to your
GitHub repository. If done correctly, there should be multiple lines of output,
concluding with a line similar to “1d2e403..a387645 master −> master”.

4 Writing loops in Python

Now you already know how to edit, commit, and push a Jupyter notebook.

1. Open the notebook task1.4.ipynb and follow the instructions in the notebook.

2. Commit and push your changes, then close VS Code (the browser tab/window).

1From the official Git documentation: https://git.kernel.org/pub/scm/git/git.git/tree
/Documentation/SubmittingPatches?h=v2.36.1#n181

Last changed: October 6, 2024 2



Lab Session 2
Images, Histograms, Intensity clipping

Übungen zur Vorlesung “Methoden der Bioinformatik”
Teil Bildanalyse (Computer Vision), BMCV Group, PD Dr. K. Rohr

Wintersemester 2024/2025

1 Image IO (input/output)

1. Open VS Code in a GitHub Codespace (see Task 2 of Lab Session 1) using the
repository which you created before (see Task 1 of Lab Session 1).

2. Open the notebook task2.ipynb.

3. Enter the following code into the first code cell of the notebook and run it:

import numpy
import matplotlib.pyplot as plt

Notes:

• The first instruction should be clear from the lecture. The second instruction
loads the module “matplotlib.pyplot” and makes it available by using the
abbreviation “plt”. This module is useful for visualizing data.

• Make sure this code cell always remains the very first code cell of your
notebook, so it is run first when the Notebook is re-run from top to bottom.

4. Then, extend the notebook as follows:

(a) Use img = plt.imread('data/cells.png') to load an image. – Note: The
type of the returned object (img) is numpy.ndarray (also see the introduction
on page 2). Objects of this type represent images.

(b) Use plt.figure() (or, e.g., plt.figure(figsize=(15,8)) if you want to
specify the size of the figure) to add a figure to a code cell of the notebook.
Then, within the same code cell, use plt.imshow(img, 'gray')1 to display the
image within the figure. In addition, use plt.colorbar() after the imshow-
instruction to include a legend of the gray-scale encoding. Run the code
cell with and without the colorbar-instruction and observe the differences.
Finally, you should obtain an output like this:

1The parameter “'gray'x’ in “plt.imshow(img, 'gray')” specifies the color map for a monochro-
matic image (i.e. a two-dimensional array of image intensities, non-RGB) for visualization (e.g., gray-scale)

Last changed: October 6, 2024 1



Lab Session 2
Introduction: Working with numpy.ndarray objects

If img is an object of the type numpy.ndarray, then the object img has the following
attributes and methods:

Attributes (data) Methods (behaviours)

img.ndim: Corresponds to the dimen-
sion of img.

img.shape: If img is an image, then
the element img.shape[0] corre-
sponds to the image height (num-
ber of rows) and img.shape[1]
to the image width (number of
columns).

img.copy(): Tells img to return a copy of
itself.

img.clip(t1, t2): Tells img to return a
copy of itself using intensity clip-
ping (see Task 3).

img.flatten(): Tells img to return a flat
representation of itself (see Task 2).

(Methods are like functions which belong
to objects.)

Note that the above is not a complete list (there are many more attributes/methods2

which are not relevant for this assignment).

Further hints regarding numpy.ndarray objects:

1. The pixel in the upper left corner of the image has the coordinates (0, 0), and the
pixel in the lower right corner has the coordinate (width − 1, height − 1).

2. If img is an image (i.e. object of the type numpy.ndarray), then the intensity value
of a pixel at position p corresponds to img[p], where p has two elements (row,
column). Alternatively, you can use img[row, column] instead of img[p].

2 Histograms

Extend your notebook by a histogram of the previously loaded image – Hints:

1. The function plt.hist(data) produces a histogram of a sequence of values (data).

2. In Python, a sequence is, for example, a list, a flat array, . . .

3. The image img is a two-dimensional array and img.flatten() returns a flat repre-
sentation (sequence of all pixel values).

2see https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html

Last changed: October 6, 2024 2



Lab Session 2
3 Intensity clipping

Given two thresholds 𝑇1 and 𝑇2, each pixel 𝑥, 𝑦 of the image with an intensity value
𝑔
(
𝑥, 𝑦

)
less than the threshold 𝑇1 is assigned the value 𝑇1 and each pixel with a value

greater than 𝑇2 is assigned the value 𝑇2. Pixels with a value between the two thresholds
𝑇1 and 𝑇2 remain unchanged:

𝑔clip
(
𝑥, 𝑦

)
=



𝑇1 if 𝑔

(
𝑥, 𝑦

)
< 𝑇1,

𝑇2 if 𝑔
(
𝑥, 𝑦

)
> 𝑇2,

𝑔
(
𝑥, 𝑦

)
otherwise

If 𝑔 is the image img, 𝑦 is the image row, and 𝑥 is the image column, then the mathe-
matical expression 𝑔

(
𝑥, 𝑦

)
corresponds to img[row, column] in Python.

In this task, you will perform intensity clipping (i.e. compute 𝑔clip, in three different
ways) using the previously loaded image (Task 1) and visualize the result using the
imshow function.

1. Perform intensity clipping using the method clip of numpy.ndarray.

2. Reproduce the behaviour of the method clip, i.e. perform intensity clipping
without using the method clip!

(a) Use two nested for-loops (one outer loop for the image rows or columns, one
inner loop for the pixels of the current row/column) and if-conditions.

(b) Use a single for-loop and if-conditions – Hint: numpy.ndindex(img.shape)
yields an iterable. The items of this iterable correspond to all pixel coordinates
of the image img. Each item is a pair of coordinates (i.e. row and column).
Use “[0]” and “[1]” to access the corresponding row and column of an item.

Include a legend of the gray-scale encoding (using “plt.colorbar()”) in each figure!

4 Writing re-usable code (bonus)

In the previous task, you have used loops to reproduce the behaviour of the method
clip of numpy.ndarray. Now, make this code re-usable by putting it into a function
which you can use anytime later. For your convenience, a skeleton of the code you
need to write to implement the function is already added to the notebook (see “def
clip_image. . . ”).

Last changed: October 6, 2024 3



Lab Session 3
Mean, Median, and Gaussian filtering

Übungen zur Vorlesung “Methoden der Bioinformatik”
Teil Bildanalyse (Computer Vision), BMCV Group, PD Dr. K. Rohr

Wintersemester 2024/2025

Preparation. Open the notebook task3.ipynb in VS Code (see Task 2 of Lab Session
1). Enter the “import numpy” and “import matplotlib.pyplot as plt” instructions
into the first code cell of the notebook and run it (cf. Lab Session 2).

1 Linear filtering by convolution (mean filter)

In this task you will implement and test a mean filter (box filter).

1. Use imread and imshow to load and show the image data/lena.png.

2. Finish the implementation of the re-usable function meanfilter. The function
parameters are img (the image to be filtered) and size (filter size determining
the filtering neighborhood). You may assume that size is an odd number. The
function must return the filtered result image. Do not modify the input image
img!

3. Test your solution by using the function meanfilter for the previously loaded
image (e.g., set the filter size to 3). If something does not work as expected, look
for errors you have made and fix them. Repeat fixing and testing until everything
works.

4. Compare your result for filter size5with the correct result imagedata/lena_mean-
filter5.png. Use imread to load the image. For a quantitative comparison of two
images, use the instruction “assert numpy.allclose(img1, img2, atol=1/255)”
where “img1” and “img2” are the two images – Notes:

(a) The instruction “assert condition” interrupts the code execution if condition
is False, rising your attention to an error. Otherwise, nothing happens.

(b) In contrast to a comparison using the mathematical equality operator (“img1
== img2”), a comparison using allclose tolerates numerical inaccuracies. The
parameter “atol=1/255” specifies the maximum tolerated difference per
pixel. Since the PNG file quantifies image intensities as multiples of 1/255,
errors lower than 1/255 cannot be distinguished from numerical inaccuracies.

Hints:

1. To create a newnumpy.ndarrayobject representing an image with heightshape[0]
and width shape[1], initially filled with zeros, you can use numpy.zeros(shape).

2. You can use two nested for-loops: An outer for-loop to iterate over all pixels of the
image and an inner for-loop to iterate over all pixels of the filtering neighborhood.

3. To iterate over all pixels of the image or the filtering neighborhood using a for-
loop, ndindex can be used (cf. Lab Session 2, Task 3.2(b)).

4. Bear in mind the border problem, i.e. you should not access pixels where the
neighborhood is partially outside the image.

5. Also consider the schematic illustration in Figure ??.

Last changed: October 6, 2024 1



Lab Session 3

Figure 1: Schematic illustration of a size × size filtering neighborhood and the image
border with n = ⌊(size − 1) /2⌋, assuming that size is an odd number ≥ 3. The image
pixel p corresponds to the center of the filtering neighborhood (i.e. the origin of the
coordinate system of the filtering neighborhood).

2 Non-linear filtering (median filter)

In this task you will implement and test a median filter.

1. Finish the implementation of the re-usable function medianfilter. The function
parameters are img (the image to be filtered) and size (filter size). You may
assume that size is an odd number. The function must return the filtered result
image. Do not modify the input image img!

2. Analogously to Task 1, test your solution by using the function medianfilter and
quantitatively compare your result for filter size 5 with the correct result image
data/lena_medianfilter5.png.

Hints:

1. You can use a list to store the pixel values of the filtering neighborhood. An
empty list is created by “list()” or the shorthand expression “[]”.

2. The function sorted(sequence) returns a sorted sequence (e.g., a list, a flat
numpy.ndarray). Alternatively, both list and numpy.ndarray objects provide
the method sort(). Using this method tells the object to sort itself. – Examples:

Example 1 Example 2 Output

data = [4, 3, 8, 2]
print(sorted(data))

data = [4, 3, 8, 2]
data.sort()
print(data)

[2, 3, 4, 8]

If data is anumpy.ndarrayobject withdata.ndim == 2, then invoking the method
data.sort() sorts the values of each row of data independently from the other
rows.

Last changed: October 6, 2024 2



Lab Session 3
3 Using pre-implemented filters

1. Load the module scipy.ndimageusing the instruction “import scipy.ndimage”.

2. Use the following pre-implemented filters in this module and include the filtering
results (via imshow) into your notebook:

(a) Use scipy.ndimage.uniform_filter(img, size) for a mean filter.
(b) Use scipy.ndimage.median_filter(img, size) for a median filter.
(c) Use scipy.ndimage.gaussian_filter(img, sigma) for a Gaussian filter

(where “sigma” is the standard deviation of the Gaussian function).

3. Compare the results obtained using the functions in 3.2(a) and 3.2(b) with those
you obtained in Tasks 1 and 2. What are the main differences? Do you have an
explanation? Use a Markdown cell to write your answer, i.e. change the cell type!

4 Slicing and benchmarking (bonus)

In this task, you will implement a filtering function which is faster than those you
implemented in Tasks 1 and 2. You will also learn how to benchmark the run time of
code.

1. Decide which filtering method you want to accelerate (mean or median filter). If
you are unsure, choose the one whose solution you are more confident with.

2. Finish the implementation of the re-usable function fastfilter. The function
parameters are img (the image to be filtered) and size (filter size). The function
must return the filtered result image. Do not modify the input image img!
Important: Use the hints below to confine your code to only a single for-loop:

(a) If img is an object of the type numpy.ndarray (e.g., an image), then
img[i0:i1, j0:j1] corresponds to the rectangular subsection of the im-
age (also called slice) ranging from row i0 to i1-1 and column j0 to j1-1 (all
inclusive). The subsection itself also is of type numpy.ndarray.

(b) For mean filters: The mean value of an numpy.ndarray object can be com-
puted using its mean() method (e.g., img.mean() if img is an object of the
type numpy.ndarray).

(c) For median filters: The method flatten() of numpy.ndarray objects (cf.
Lab Session 2) yields a flat representation (which can be sorted).

3. Test your solution by using the function fastfilter for the previously loaded
image and quantitatively compare your result to that you obtain using meanfilter
or medianfilter, respectively.

4. Use the instruction “%timeit fastfilter(img, 9)” to benchmark the run time
of your fastfilter implementation. Use a similar instruction to benchmark the
run time of meanfilter or medianfilter, respectively.

5. Document your observations and try to think of an explanation (use Markdown!)

Last changed: October 6, 2024 3



Lab Session 4
Edge detection: Derivative operators

Übungen zur Vorlesung “Methoden der Bioinformatik”
Teil Bildanalyse (Computer Vision), BMCV Group, PD Dr. K. Rohr

Wintersemester 2024/2025

Preparation. Open the notebook task4.ipynb in VS Code (see Task 2 of Lab Session
1). Enter the “import numpy” and “import matplotlib.pyplot as plt” instructions
into the first code cell of the notebook and run it (cf. Lab Session 2).

1 Prewitt filter

1. Use imread and imshow to load and show the image data/lena.png.

2. Compute the partial derivatives 𝑔𝑥 and 𝑔𝑦 of an image 𝑔
(
𝑥, 𝑦

)
by convolving

the image with Prewitt derivative operators (see Figure 1). To this end, finish
the implementation of the re-usable functions prewitt_h and prewitt_v. The
functions are supposed to compute and return the convolution of the input image
img with the horizontal and vertical Prewitt derivative operators, respectively. –
Hints:

(a) Do not modify the input image! Avoid the border problem by computing
the partial derivatives 𝑔𝑥 and 𝑔𝑦 only for those pixels which have their
neighborhood completely inside the image.

(b) If you do not know where to start, start from your implementation of the
mean filter (Lab Session 3, Task 1.2). The 3 × 3 mean filter performs a
convolution using a uniform filter mask (weighting each image pixel equally,
dividing by 3 × 3 = 9). You only need to change the weights based on the
values of “q”!

3. Test your implementations for prewitt_h and prewitt_v by including images of
the computed partial derivatives into your notebook. Use colorbar() after each
imshow-instruction to also include a legend of the gray-scale encoding.

4. Quantitatively compare your results obtained using prewitt_h and prewitt_v
with the correct result images data/lena_prewitt_h.tiff and data/lena_-
prewitt_v.tiff, respectively (for quantitative image comparison, recall Lab Ses-
sion 3, Task 1).

Important hint: Use skimage.io.imread instead of imread to load a TIFF file. How-
ever, remember to first load the skimage.iomodule (use “import skimage.io”).

Rule of thumb:1 There is no reason for not always using skimage.io.imread (and not
using plt.imread) except that you have to remember to load the module.

𝑥

𝑦

+1 0 -1
1
6 +1 0 -1

+1 0 -1

+1 +1 +1
1
6 0 0 0

-1 -1 -1

Figure 1: Prewitt derivative operators

1e.g., for the exam ¥⌣

Last changed: October 6, 2024 1



Lab Session 4
2 Edge detection

1. Compute the magnitude of the image gradient

∇𝑔 (
𝑥, 𝑦

) = √
𝑔2𝑥

(
𝑥, 𝑦

) + 𝑔2𝑦
(
𝑥, 𝑦

)
and include the resulting image into the notebook. Hints:

(a) When working with objects of the type numpy.ndarray (e.g., images), math-
ematical operations are propagated to the intensity values of the image. For
example, if img is an image of the type numpy.ndarray, then the expression
img*2 yields an image with doubled intensities (in comparison to img).

(b) The square root of an intensity value (or all values in an image that is a
numpy.ndarray object) can be computed using the numpy.sqrt function (e.g.,
numpy.sqrt(value) or numpy.sqrt(img)).

2. Quantitatively compare your result with the correct result image data/lena_-
prewitt_gradmag.tiff.

3 Sobel filter (bonus)

Repeat Task 1 using the Sobel filter instead of the Prewitt filter:

1. Compute the partial derivatives 𝑔𝑥 and 𝑔𝑦 by convolving the image 𝑔
(
𝑥, 𝑦

)
with

Sobel derivative operators (see Figure 2). To this end, implement the re-usable
functions sobel_h and sobel_v analogously to prewitt_h and prewitt_v.

2. Test your implementations for sobel_h and sobel_v by including images of the
computed partial derivatives into your notebook (also include color legends).

3. Quantitatively compare your results using sobel_h and sobel_vwith the correct
result images data/lena_sobel_h.tiff and data/lena_sobel_v.tiff, respec-
tively.

𝑥

𝑦

+1 0 -1
1
8 +2 0 -2

+1 0 -1

+1 +2 +1
1
8 0 0 0

-1 -2 -1

Figure 2: Sobel derivative operators

Last changed: October 6, 2024 2


